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Abstract. We study the long Josephson junction model, which takes into account the second harmonic 

in current-phase relation. We use the current-phase relation with second harmonic sin 2𝜙 in addition to 

the first harmonic sin𝜙. The influence of the second harmonic on the stability of magnetic flux 

distributions for main solutions is discussed. The influence of the second harmonic on Josephson 

penetration depth was calculated using the expression for effective critical current.  Obtained results 

compared with results of another theoretical models. 
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1.        Introduction 

 

Low dimensional structures play important role in many electronic devices. 

Optimization of their properties and functioning of such devices require tuning the 

material properties and revealing the most appropriate device architecture. This concerns 

also Josephson junctions. Physical properties of magnetic flux in Josephson junctions 

play important role in the applied superconductivity.  The remarkable feature of 

Josephson junctions is the fact that the phase difference at the junction is described in 

terms of the sine-Gordon equation (Barone et al., 1982; Likharev, 1986; Askerzade et al., 

2017).  In the investigations of the dynamics of such structures, the current-phase relation 

of Josephson junction (Askerzade et al., 2017).  

𝐼 = 𝐼𝑐 sin𝜙                                                      (1) 

were used. The relationship (1) is fulfilled with high accuracy for Josephson junctions on 

low-temperature superconductors (Il’ichev et al., 2017). In the case of junctions on high-

temperature superconductors, the current-phase relation becomes anharmonic (Tsuei et 

al., 2000). 

𝐼 = 𝐼𝑐0𝑓𝛼(𝜙) = 𝐼𝑐0(sin𝜙 + 𝛼 sin 2𝜙),                               (2) 

where anharmonicity parameter α depends on the junction  preparation technology. In 

general, anharmonicity in the current-phase relation for high-temperature and Fe-based 

superconductors based junctions are associated with the d-wave behavior of the order 

parameter and many band characters of superconducting state in new superconducting 

compounds (Askerzade et al., 2012). Dynamical properties of single  junctions  with an 
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anharmonic current-phase relation (2) were previously studied in papers (Canturk et al., 

2011; Canturk et al., 2012).  

In the case of  long Josephson junctions   with  anharmonic   current-phase relation,  

the phase dynamics and the influence of fluctuations effects can exhibit new features. 

Especially, the  presence of second harmonic (Eq. (2)) can lead to significant changes of 

shape and stability  properties using numerical methods  (Atanasova et al., 2010; 

Atanasova et al., 2011; Dimov et al., 2019).  In this study, we discuss the soliton  

dynamics of  long Josephson junction with anharmonic current-phase relation. The details 

of the changing of London penetration   of  junctions with unconventional current-phase 

relation in single long Josephson junction are analyzed using effective critical current in 

such juncrion. 

  

2.       Basic equations  

 

The physics of solitons in long Josephson junctions appears in various contexts 

within nonlinear physics, superconductivity, and high-frequency device applications. A 

soliton in a long Josephson junction is often called a "fluxon" since it accounts for a 

magnetic flux quantum Φ0 =
ℎ

2𝑒
= 2.07 × 10−15 Wb moving between two 

superconducting electrodes of the junction. A fluxon in a long Josephson junction carries 

a magnetic flux equal to one flux quantum. Its appearance is explained in Fig. 1. This 

figure shows the cross-view of the junction in the plane perpendicular to the external 

magnetic field H. Josephson tunnel barrier is a thin (1 - 2 nm thick) layer of insulator (I) 

between two superconducting electrodes (S). Due to the Meissner effect, the external field 

is screened by circulating supercurrents and it penetrates inside a bulk superconductor to 

the distance known as the London penetration depth λL (Schmidt, 1997; Ustinov, 2008). 

 

 
 

Fig. 1. Schematic view of long Josephson junction 

 

In the region of the Josephson barrier, the screening effect is weakened, thus the 

magnetic field penetration distance is larger. This distance is called the Josephson 

penetration depth λ. Its value depends on the strength of the Josephson coupling between 

electrodes. The screening currents form a "tangle" penetrating to the distance of about λ, 

into the Josephson junction. 

Mathematically, the fluxon corresponds to a 2π kink of the quantum-mechanical 

phase difference c 2π between the two superconducting electrodes of the junction. The 

sine-Gordon equation which describes the quasi-one-dimensional dynamics of the 

system, in normalized form, is (Schmidt, 1997; Ustinov, 2008). 
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𝑑2𝜙

𝑑𝑥2
=

1

𝜆2
sin𝜙                                                    (3) 

where London penetration depth is determined as  

                                                          
2/1

2

0 )
8

(
djc




 .                                                 (4) 

In the last expression jc critical current density of the Josephson junction, 

,2 td L    t is the thickness of the insulating layer. To account for the behavior of a real 

junction, Eq. (3) must be solved together with the appropriate boundary conditions which 

depend on the junction geometry and take into account the magnetic field applied in the 

plane of the junction (Kuplevakhsky, 2006; Kuplevakhsky, 2007).   Application of similar 

Eqs. for the study of soliton dynamics in branched Josephson junctions can be found in 

Ref. (Sabirov et al.,2018; Sabirov et al., 2020), An important solution to Eq. (3)  is the 

soliton 

))(arctan(exp4)(



x

x  .                                      (5) 

This solution is shown in Fig. 2. It describes a 2 -kink moving with a velocity u and 

located at x = x0 for t = 0.  Equation (3) for both open and periodic boundary conditions 

has been discussed   in  detail using  method  of Sturm-Louville by in (Ustinov, 2008). 

 

 
 

Fig. 2.  Phase changing in long Josephson junction 

 

3.       Results and discussions 

 

Using anharmonic current-phase relation (2) leads to the double sine-Gordon 

equation (Atanasova et al., 2010; Atanasova et al., 2011) 

0)2sin(sin
1
22

2

 




dx

d
.                               (6) 

The magnitude γ is the external current, l is the semi-length of the junction.  All the 

magnitudes are dimensionless. The boundary conditions for (6) have the form 
𝑑𝜙

𝑑𝑥
(±𝑙) =

ℎ𝑒 .  
Stability and bifurcations of static solutions ϕ(x, p), where p = (l, α, he, γ) are 

analyzed  based on  numerical solution of the corresponding Sturm-Louville problem 

(Atanasova et al., 2010; Atanasova et al., 2011) 




 )(
2

2

xq
dx

d
,                                                   (7) 

0)(  l , 


 2cos
2

cos)( q .                                         (8) 



I.N. ASKERZADE, M. SALATI: THE INFLUENCE OF ANHARMONIC CURRENT-PHASE... 

 

 
19 

 

The minimal eigenvalue 𝜆0(𝑝) > 0 corresponds to the stable solution. In case 𝜆0(𝑝) < 0 

solution 𝜙(𝑥, 𝑝) is unstable. The solutions of equation (6) are determined by a number of 

fluxons 𝑁(𝑝) which is defined as 






l

l

dxx
l

pN )(
2

1
)( 


  .                                                    (9) 

In the harmonic case 0   two trivial solutions 𝜙 = 0 and 𝜙 = 𝜋 of (7), (8) are known 

at 𝑦 = 0  and ℎ𝑒 = 0, which are denoted by 𝑀0(𝑁[𝑀0] = 0) and 𝑀𝜋(𝑁[𝑀𝜋] = 1), 
respectively. Accounting of the second harmonic asin 2𝜙 leads to the appearance of two 

additional solutions 𝜙 = ±arccos(−1/𝑎) denoted as 𝑀±𝑎𝑐(𝑁[𝑀±𝑎𝑐]) are not integer 

numbers and depend on the value of second harmonic). Stability properties of trivial 

solutions in dependence on parameters are considered in (Atanasova et al., 2010; 

Atanasova et al., 2011). It was shown the deformation of the Meissner solution M0. 

Inclusion of anharmonicity parameter in current-phase relation changes the shape and 

stability properties phase distribution in the long Josephson junction.   

 

 
Fig. 3. Effective critical current of junction with anharmonic current-phase relation 

 

As shown in (Kulikov, 2019; Askerzade et al., 2020) the presence of the second 

harmonic in the current-phase relation in Eq. (2) leads to the renormalization of critical 

current Ic0. In calculations, we use an analytical solution for the maximum point of the 

function fα(ϕ) (2) similar to (Goldobin et al., 2007).  Calculation leads to the expression 

for the renormalized critical current    at small anharmonicity parameter 𝛼 

 
𝐼𝑐

𝐼𝑐0
≈ 1 + 2𝛼2 .                                                          (10) 

The effective critical current Ic of a junction with an anharmonic current-phase relation 

as a function of the amplitude of the second term α (see Eqs. (2)) is presented in Fig. 3. 

As you can see, with the increase of this amplitude, the effective critical current Ic has 

also increased. Quadratic behavior at small α (Eq. (2)) is converted to linear dependence 

at high values of anharmonicity parameter α.  In our opinion this effective critical current 

approach can be adopted for the analysis of the Josephson penetration depth    in long 

junctions. Recalculated Josephson penetration depth λ (Eq. (4), taking into account 

critical current renormalization (10)) is presented in Fig 4.  It is clear that the Josephson 

penetration depth λ decreases with increasing anharmonicity parameter α. Such a result 

can be explained by the decrease of the Josephson junction inductance with an increase 
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of critical current 𝐼𝑐 and as a result of a weakening of inertial properties.  It is useful to 

note that obtained results in qualitative agreement with results of Refs. (Atanasova et al, 

2010; Atanasova et al., 2011). 

 

 
 

Fig. 4. Josephson penetration depth in long junction with anharmonic current-phase relation. 

 

4.       Conclusion 

 

Thus, in this study, the long Josephson junction model with the second harmonic in 

current-phase relation is considered. The influence of the second harmonic on the stability 

of magnetic flux distributions for main solutions is analyzed.  The effect of the second 

harmonic on Josephson penetration depth was calculated using numerical results for 

effective critical current.   
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